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Abstract

Studies of human exposure to petroleum (crude oil and fuel) often involve monitoring volatile 

monoaromatic compounds because of their toxicity and prevalence. Monoaromatic compounds 

such as benzene, toluene, ethylbenzene, and xylenes (BTEX) associated with these sources have 

been well studied and have established reference concentrations (RfC) and reference doses (RfD). 

However, BTEX exposure levels for the general population are primarily from tobacco smoke, 

where smokers have blood levels up to 8 times higher on average than nonsmokers. Therefore, in 

assessing petroleum exposure, it is essential to identify exposure to tobacco smoke as well as other 

types of smoke exposure (e.g., cannabis, wood) because many smoke volatile organic compounds 

are also found in petroleum products such as crude oil, and fuel. This work describes a method 

using partition theory and artificial neural network (ANN) pattern recognition to accurately 

categorize exposure source based on BTEX and 2,5-dimethylfuran blood levels. For this 

evaluation three categories were created and include crude oil/fuel, other/nonsmoker, and smoker. 

A method for using surrogate signatures (i.e., relative VOC levels derived from the source 

material) to train the ANN was investigated where blood levels among cigarette smokers from the 

National Health and Nutrition Examination Survey (NHANES) were compared with signatures 

derived from machine-generated cigarette smoke. Use of surrogate signatures derived from 

machine-generated cigarette smoke did provide a sufficient means with which to train the ANN. 

As a result, surrogate signatures were used for assessing crude oil/fuel exposure because there is 

limited blood level data on individuals exposed to either crude oil or fuel. Classification agreement 

between using an ANN model trained with relative VOC levels and using the 2,5-dimethylfuran 

smoking biomarker cutpoint blood level of 0.014 ng/mL was up to 99.8 % for nonsmokers and 

100.0% for smokers. For the NHANES 2007–08 data, the ANN model using a probability cutpoint 

above 0.5 assigned 7 samples out of 1998 (0.35%) to the crude oil/fuel signature category. For the 
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NHANES 2013–14 data, 12 out of 2906 samples (0.41%) were assigned to the crude oil/fuel 

signature category. This approach using ANN makes it possible to quickly identify individuals 

with blood levels consistent with a crude oil/fuel surrogate among thousands of results while 

minimizing confounding from smoke. Use of an ANN fixed algorithm makes it possible to 

objectively compare across populations eliminating classification inconsistency that can result 

from relying on visual evaluation.

1. Introduction

As oil and natural gas extraction capacity grows to meet increased demand for petroleum-

based products, the potential for exposure to volatile organic compounds (VOCs) from these 

sources increases. Exposure to VOCs from these particular sources is important to identify 

and minimize because they include toxicants such as benzene, toluene, ethylbenzene, and 

xylenes (BTEX) that can cause cancer, neurological damage and impairment, and 

pulmonary and cardiovascular disease (Grandjean and Landrigan 2014; Korte et al. 2000; 

Maltoni et al. 1985; Mogel et al. 2011; Xu et al. 2009). BTEX concentrations are commonly 

measured in environmental and biomonitoring samples to assess exposure levels associated 

with petroleum sources because they are (1) prominent components in petroleum, (2) carried 

over from crude oil into consumer products or fortified in fuels for their anti-knock 

properties, (3) chemically stable, and (4) persist as intact compounds in the environment and 

in the body.

Although BTEX are quantifiable in breath, blood, urine and as urinary metabolites, blood 

levels are more sensitive (low pg/mL), selective, and can be more precisely quantified 

(Blount et al. 2006; Chambers et al. 2006). In general, because of their relatively nonpolar 

character, VOCs such as BTEX partition at higher concentrations in blood than in urine. 

Additionally, if the VOC is not reactive, it will not efficiently form a metabolite. However, in 

the case of reactive VOCs such as acrolein, acrylonitrile, 1,3-butadiene, and isoprene, VOC 

concentrations should be measured using the metabolite as these compounds are not stable 

in blood on the order of days, even if stored at refrigerator temperatures. Even though 

reactive VOCs can be captured in breath in real time, quantitative breath measurements of 

VOCs are challenging to standardize because VOCs localize in different regions of the lungs 

(Anderson et al. 2003; Kim et al. 2012). In addition, mixing of lung air containing VOCs 

with inhaled air can cause variations in measured levels that are dependent on breathing 

technique. Because lung retention has been shown to be related to blood/air partition 

constant (Jakubowski and Czerczak 2009), BTEX levels are between 7 to 35 times higher in 

blood than in lung air. These variations in breath analysis makes this measurement more 

suitable for noninvasive semi-quantitative or qualitative analyses.

A reoccurring impediment to petroleum exposure assessment using biomarkers such as 

BTEX has been confounding by exposure to tobacco smoke VOCs because BTEX are 

formed from tobacco combustion. In fact, tobacco smoke contains ppm levels(Pazo et al. 

2016) of these and other petroleum biomarkers as both are derived from the decomposition 

of biomass. Among cigarette smokers, blood VOC levels can reach the low ng/mL range, 

whereas nonsmokers are typically below the pg/mL range (Chambers et al. 2011). 
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Therefore, if including smokers in biomonitoring studies investigating petroleum exposure, 

smokers need to be accurately categorized because of their potential to confound the 

assessment.

To advance more accurate and consistent exposure assessment, we describe a biomonitoring 

approach that identifies VOC exposure specific to petroleum through pattern recognition 

using artificial neural network modeling. As a way to minimize confounding seen by other 

significant VOC exposure sources such as tobacco smoke, we investigated the use of relative 

combustion biomarker levels of BTEX and styrene (BTEXS), and 2,5-dimethylfuran. Blood 

levels for styrene are included in this work because styrene is a BTEX concomitant 

measurable in smoke and petroleum (Chambers et al. 2006; Chambers et al. 2011). 2,5-

Dimethylfuran is included because it is a smoke biomarker that exists at levels comparable 

to BTEX and styrene (Ashley et al. 1996; Gordon SM 1990). In this work, we demonstrate 

that relative blood BTEXS levels among smokers and cigarette tobacco smoke remain 

consistent over a range of cigarette brand varieties and smoking techniques. This approach, 

based on the similarity of BTEXS physical properties and on partition theory, is used to 

identify individuals with relative levels of these VOCs in their blood that are consistent with 

those deduced from concentrations associated with petroleum (e.g., crude oil and fuel). 

Although VOC blood levels vary with source concentration, relative proportions can remain 

consistent and unique to a particular source especially for VOCs with similar chemical 

properties, such as the BTEXS.

2. Experimental

2.1. Population Data

Population data were taken from the 2007–08 and 2013–14 National Health and Nutrition 

Examination Survey (NHANES) provided by the National Center for Health Statistics 

(NCHS) (Centers for Disease Control and Prevention (CDC) 2007–08 and 2013–14). 

Collection of blood is a priority exam at the NHANES mobile examination center, especially 

if participants have been fasting for at least 9 hours. As a result, the mean collection time 

from check-in is approximately 40 min. Laboratory measurements were performed by 

CDC’s Division of Laboratory Sciences (DLS) at the National Center for Environmental 

Health (NCEH). The VOC blood levels were quantified by equilibrium headspace solid 

phase microextraction (SPME)/gas chromatography (GC)/mass spectrometry (MS) of 

hermetically collected participant blood samples collected at an NHANES mobile 

examination center (MEC) (Centers for Disease Control and Prevention (CDC) 2007–08 and 

2013–14). Blood from 3415 participants for NHANES 2007–08 (SAS export file: 

VOCWB_E.XPT) and 3489 for NHANES 2013–14 (SAS export file: VOCWB_H.XPT) was 

analyzed, where both cycles were a half subsample of 12 years of age and older. When 

available, blood levels for benzene, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, 

and 2,5-dimethylfuran were used in this study. Specifically, styrene was not available in the 

NHANES 2013–14, but was available in the NHANES 2007–08 and thus was used in 

pattern recognition modeling for other/nonsmoker and smoker. Participants were excluded if 

any of the needed VOCs were missing. Survey data for the 2007–08 NHANES cycle on 

recent VOC exposure was included in SAS export file, VOCWB_E.XPT, and recent tobacco 

Chambers et al. Page 3

Environ Sci Technol. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



use were collected at the mobile examination center (SAS export file: SMQRTU_E.XPT) on 

the day of the health exam. Corresponding survey data for the 2013–14 NHANES cycle on 

recent VOC exposure was reported in SAS export file VTQ_H.XPT and recent tobacco use 

in file SMQRTU_H.XPT. Specific questionnaire data regarding recent VOC exposure and 

tobacco use for evaluating ANN model results are specified in the Discussion section.

2.2 Estimation of VOC Surrogate Signatures from Source Concentration

Cigarette tobacco smoke BTEXS and 2,5-dimethylfuran levels used in this study were 

quantified using Tedlar bag collection of machine smoked cigarettes followed by 

equilibrium headspace SPME/GC/MS analysis as described elsewhere (Sampson et al. 

2014). These cigarette smoke VOC levels were generated using the ISO (3308:2012) and 

Canadian Intense (CI) protocols from 50 U.S. brand varieties of cigarettes from brand 

families that comprise 78% of the market share at the time of the sampling (Pazo et al. 

2016). Surrogate estimates of blood BTEXS and 2,5-dimethylfuran levels were produced by 

multiplying these smoke levels by their respective blood/air partition constant, Kblood/air, and 

normalizing the levels relative to toluene, a high detection rate analyte in blood. Although, 

m/p-xylene blood levels had a slightly higher detection rate than toluene, toluene was used 

because available crude oil and fuel BTEX data combined m/p-xylene with o-xylene where 

o-xylene had a lower detection rate than toluene. The corresponding Kblood/air values used 

for this adjustment were taken from Meulenberg and Vijverberg (Meulenberg and Vijverberg 

2000), where benzene is 7.37, toluene is 15.11, ethylbenzene is 28.2, styrene is 55.6, total 

xylene is 36.13 (the average of 33.2 for m-xylene, 38.9 for p-xylene, and 36.3 for o-xylene), 

and m/p-xylene is 36.05 ( the average Kblood/air for m-xylene and p-xylene). A measured 

value of Kblood/air for 2,5-dimethylfuran was not available, but was estimated to be 8.5 using 

previous published regression data (Kramer et al. 2016). The use of these surrogate VOC 

signatures (i.e., relative VOC levels derived from the source material) is compared with 

measured blood VOC signatures (i.e., relative VOC levels in blood) in training of the 

artificial neural network pattern recognition model for data classification.

The surrogate blood VOC signatures for crude oil and fuel exposure used for training the 

ANN were estimated from crude oil and fuel source signatures from the Environment 

Canada Environmental Technology Centre Oil Properties Database (Environment Canada 

Environmental Technology Centre 2001). This database reported data for benzene, toluene, 

ethylbenzene and total xylene, but not styrene. Unweathered crude oil selected were 

representative of different regions of the world and fuels were representative of different 

types of fuels. Crude oils included Cusiana (Columbia), Dos Cuadras (California), Boscan 

(Venezuela), Arabian Medium, Alaska North Slope (2002), Arabian Light (2000), Chayvo 

#6 (Sakhalin), Amauligak (Canada), Carpinteria (California), Maya (Mexico), Maya (1997), 

Isthmus (Mexico), Cano Limon (Columbia), Vasconia (Columbia), BCF 24 (Venezuela), 

West Texas Intermediate, West Texas (2000), West Texas Sour, Cold Lake Blend (Alaska), 

Mississippi Canyon Block 194, Terra Nova (Canada), Eugene Island Block 32 ( Louisiana), 

South Louisiana (2001), Ekofisk (Norway). Fuels included Aviation Gasoline 100LL, Diesel 

Fuel Oil (2002), Diesel Fuel Oil (Alaska), Diesel Fuel Oil (Southern U.S.A., 1994), Diesel 

Fuel Oil (Southern U.S.A., 1997), Fuel Oil No. 5 (2000), High Viscosity Fuel Oil, Jet A/Jet 

A-1, Jet B (Alaska). The automobile gasoline BTEX signature used was from the Total 
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Petroleum Hydrocarbon Criteria Working Group (Potter et al. 1998). These surrogate blood 

signatures were created using the same procedure as described for producing the surrogate 

blood VOC signatures for cigarette smoke exposure.

2.3 Statistical Analysis

JMP 12.0 was used for all the statistical analyses. Central tendency for blood VOC levels is 

expressed as geometric mean because the data followed a log normal distribution. For the 

artificial neural network (ANN) analyses, model parameters were fit via penalized maximum 

likelihood maximization (Gotwalt 2011). Separate log-likelihoods were computed for each 

response, and the overall log-likelihood for all the responses was taken as the sum of the log-

likelihoods of the individual responses. The model used one hidden layer with 15 hidden 

nodes each using a hyperbolic tangent (TanH) activation function and was validated using a 

holdback fraction of 0.33. The optimal number of hidden nodes was determined as the 

minimal number of nodes that yielded, on average, the best classification accuracy in the 

training set with regard to the surrogate crude oil/fuel signatures. The output layer had three 

output nodes, corresponding to smoker, to crude oil/fuel, and to neither smoker nor crude 

oil/fuel, which is referred to as other/smoker. Input variables for the characterization of 

smoker and other/nonsmoker (not exposed to either crude oil/fuel or smoke) included blood 

levels for BTEXS and 2,5-dimethylfuran where smoking status was designated by 2,5-

dimethylfuran blood levels greater than or equal to 0.014 ng/mL. Input variables for the 

characterization of crude oil/fuel exposure included normalized surrogate blood signatures 

calculated from measurements of source petroleum/fuels for BTEX where 2,5-dimethylfuran 

was inputted as below LOD. Models that involved categorizing only smokers and other/

nonsmokers used the entire 2007–2008 NHANES data set where there were approximately 4 

times more other/nonsmokers than smokers. However, for models with the crude oil 

category, all the categories were adjusted so that each category had similar numbers of 

results of approximately 500, 333 for training and 167 for validating the ANN. In this case, 

the training set for the other/nonsmoker category was randomly sampled to decrease its size, 

all smokers were used and the surrogate crude oil/fuels signatures were oversampled(Chawla 

et al. 2002) by duplicating their results. Output value (probability ranging from 0 to 1) 

cutpoint for assignment to a category is set to 0.5. Blood levels were normalized because the 

surrogate signature used for crude oil and fuel exposure only expresses relative level and not 

absolute concentration. Rows with missing values were ignored.

The robustness and appropriateness of using measured vs. surrogate signatures were 

assessed in an experiment involving classification of smokers and other/nonsmokers using 

the NHANES 2007–2008 data. The percentage of correct classification assignments was 

based on 2,5-dimethylfuran cut-point. Note that the NHANES 2007–2008 data had only two 

classifications, other/nonsmoker and smoker, any individuals that may have a signature 

corresponding to the surrogate crude oil/fuel signature were initially assigned to either other/

nonsmoker or smoker in the training. Following this experiment, an ANN model used for 

classification of all three groups—other/nonsmoker, smoker, and crude oil/fuel—was 

constructed by combining the surrogate crude oil/fuel signatures with the other/nonsmoker 

and smoker signatures from the NHANES 2007–2008 data. Once this final model with the 

three categories was created, it was applied to the NHANES 2013–2014 data.
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3. Results

Without a sufficient quantity of known crude oil or fuel blood signatures with which to train 

the ANN, it was necessary to generate surrogate signatures to flag possible crude oil or fuel 

exposed individuals at large. For this surrogate signature, blood BTEX signatures were 

estimated from relative levels of these chemicals in different crude oils and fuels. Estimates 

of relative levels of VOCs in blood were made by adjusting the relative crude oil or fuel 

BTEX concentrations based on blood-air partition constant, Kblood/air, assuming 

equilibration. This approach is first demonstrated in the following data where relative blood 

VOC levels of cigarette smokers are estimated from relative VOC levels measured in 

cigarette smoke from different cigarettes.

Shown in Fig. 1 is a comparison between absolute and relative blood VOC levels measured 

in cigarette smokers and relative levels measured in cigarette smoke itself. The BTEXS and 

2,5-dimethylfuran blood VOC levels were from the 2007–08 NHANES and are baseline 

adjusted mean levels for participants who reported smoking only 5, 10, 15, 20, 30, and 40 

cigarettes per day (CPD). The number of individuals (N) in these categories ranged from 14 

to 91 as noted in the figure caption. Baseline adjustment of cigarette smoker blood levels 

was performed by subtracting the mean blood level of individuals that were classified as 

other/nonsmoker (N=4876). Other/nonsmoker were identified as having blood 2,5-

dimethylfuran levels < 0.014 ng/mL. Levels in Fig. 1a were not normalized so that 

magnitude of VOC exposure could be compared. Upon normalizing Fig. 1a data to toluene, 

the relative standard deviation of the relative signal that existed across the CPD categories in 

Fig. 1a was 10.7 for m/p-xylene, 8.1 for benzene, 7.6 for ethylbenzene, 18.9 for styrene, 

29.6 for o-xylene, and 9.6 for 2,5-dimethylfuran.

The surrogate blood VOC signatures estimated from cigarette smoke levels are shown in 

Fig. 1b. These signatures were created by first multiplying the amount of the VOC per 

smoked cigarette (generated using either the Canadian Intense and ISO protocols) by the 

corresponding Kblood/air, and then normalizing these levels with respect to toluene for the 

sake of comparison with blood levels in cigarette smokers. This surrogate signature is 

compared to a normalized composite of blood levels among all NHANES 2007–08 smokers, 

classified using a 2,5-dimethylfuran cutpoint level above 0.014 ng/mL.

The same procedure used to estimate blood VOC level signatures for smokers was used to 

generate potential blood VOC signatures for individuals with blood VOC signatures 

consistent with those for deduced from crude oil or fuel. In this application, VOC levels 

among different crude oil and fuels were obtained primarily from Environment Canada’s Oil 

Properties Database. Petroleums selected included 25 crude oils from the United States and 

other large oil producing countries, and 9 fuels (Environment Canada Environmental 

Technology Centre 2001). Because a signature for automobile gasoline was not available in 

this database, the one from the Total Petroleum Hydrocarbon Working Group was used 

(Potter et al. 1998). In the Environment Canada’s database, levels of xylene’s structural 

isomers (m-xylene, p-xylene, and o-xylene) were combined and there were no data for 

styrene. Levels for 2,5-dimethylfuran, which is not a substantial compound in petroleum, 

were added to the signature and set to below the LOD (imputed as LOD/√2). Accordingly, 
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the BTEX levels for different petroleums were adjusted with the corresponding Kblood/air 

and normalized relative to toluene for intercomparison and comparison with the NHANES 

blood signatures. Shown in Fig. 2 is a comparison of the resulting composite petroleum 

signature, the surrogate blood level composite signature derived from the petroleum 

signatures (adjusted based on blood/air partition constants and normalized relative to 

toluene), and an individual blood signature from a known fuel exposure (Chambers et al. 

2008).

Shown in Fig. 3 are density plots characterizing ANN predictions for the NHANES 2013–14 

data using a model trained and validated with NHANES 2007–08 data. Toluene, total 

xylenes (m/p-xylene + o-xylene), benzene, ethylbenzene, and 2,5-dimethylfuran levels were 

used as input variables in modeling. For the ANN model, the prediction variables were 

other/nonsmoker, smoker, and crude oil/fuel groups, where training signatures were from 

individuals identified as other/nonsmoker and smokers established using blood 2,5-

methylfuran levels (cutpoint = 0.014 ng/mL)(Chambers et al. 2011) and surrogate crude oil 

and fuel signatures. The training set for the other/nonsmoker signature included crude oil/

fuel signatures that had not yet been identified as so. Fitting the NHANES 2013–14 data 

repeatedly ten times resulted in varying assignments where the number of predicted crude 

oil/fuel signatures ranged from 7 to 24. Each of these 10 models properly identified a 

positive control blood signature from an individual with known fuel exposure presumed to 

be from inhalation(Chambers et al. 2008) with probabilities ranging from 0.9800 to 0.9999. 

Visual inspection of each sample identified as having the crude oil/fuel signature by any of 

these 10 models were similar to the surrogate and known exposure blood sample signatures. 

The first model fit of the NHANES 2007–08 data categorized 7 individuals as crude oil/fuel 

(0.35%), 1591 as other/nonsmoker (79.63%) and 400 as smoker (20.02%). Prediction results 

using the NHANES 2013–14 blood VOC data from the first model fit are graphed in Fig. 3a 

and consisted of 12 crude oil/fuel (0.41%), 2290 other/nonsmoker (78.80%) and 604 smoker 

(20.79%). Note that the crude oil/fuel probability cutpoint is 0.5, however because of 

smoothing by JMP, the graphical boundary for the crude oil/fuel distribution extends below 

0.5. Most smokers and other/nonsmoker had a probability below 0.25 with 5 other/

nonsmoker and 1 smoker between 0.25 and 0.5. Shown in Fig. 3b are corresponding 

probabilities for other/nonsmoker and smoker with the petroleum/fuel group identified in 

Fig. 3a. Among the samples categorized as either other/nonsmoker or smoker, most (i.e., 

2791) had probabilities less than 0.25 or greater than 0.75, where 103 samples fell between 

these limits.

Compared in Fig. 4 are VOC levels categorized in the three exposure categories including 

crude oil/fuel, other/nonsmoker, and smoker groups for the NHANES 2007–08 data with 

m/p-xylene and o-xylene separated and with styrene included. Blood concentrations are 

expressed as geometric means because the data are lognormally distributed. Relative toluene 

and 2,5-dimethylfuran levels are highest among smokers. Among individuals categorized in 

the crude oil/fuel group had relative xylene levels significantly higher than other/nonsmoker 

and smoker. Benzene and styrene levels were comparable between smoker and crude oil/fuel 

groups.
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4. Discussion

Elimination half-life for BTEXS, which have similar blood stabilities, polarities and 

solubilities, range from 15–30 hrs and are typically 1–2 orders of magnitude longer than 

alpha-phase half-lives. Therefore, blood levels can persist above detectable levels even if 

blood samples are collected beyond the alpha-phase half-life. Furthermore, an average 

systematic concentration or steady state is achieved for persistent transient exposure whose 

mean can be determine with sufficient sampling of the population. Individuals who are not 

exposed to either crude oil, fuel, or smoke have BTEXS blood levels near or below detection 

as these VOC sources substantially drive BTEXS levels in the general U.S. population 

(Chambers et al. 2011). BTEXS signatures resulting from crude oil/fuel exposure can be 

confounded by exposure to tobacco smoke, especially from cigarette use, as smoking 

prevalence in the United States is 16.4% (Jamal et al. 2015) and tobacco smoke has high 

levels of BTEXS (μg/cigarette) (Pazo et al. 2016). Fortunately, the blood BTEXS signature 

among smokers (based on relative level) is conserved despite demographic and smoking 

technique differences, although absolute levels vary substantially. This consistency in 

relative blood BTEXS level is apparent from the high correlation among the BTEXS 

compounds for smokers who report smoking between 5 and 40 cigarettes per day (Fig. 1a), 

where Pearson r ranges from 0.55 (o-xylene and benzene) to 0.96 (m/p-xylene and 

ethylbenzene) and are consistent with those previously reported (Chambers et al. 2011). The 

basis for this consistency is the conservation of relative VOC levels from mainstream 

cigarette smoke where these relative levels have been shown to exist within a narrow range. 

In a study of 50 different U.S. brand varieties generated with two different smoking machine 

protocols, the Pearson r values among the BTEXS ranged from 0.83 (o-xylene vs. benzene) 

to 0.98 (m/p-xylene vs. o-xylene) (Pazo et al. 2016). This high degree of consistency and 

correlation persists despite differences in influential cigarette parameters such as percent tip 

ventilation and number of puffs per cigarette (Pazo et al. 2016) and confirms that there is a 

characteristic BTEXS signature among the different brand varieties.

This consistency in relative BTEXS levels in mainstream smoke makes possible a 

proportional relationship between tobacco smoke and blood VOC levels that is attributed to 

quick equilibration of inhaled VOCs. Blood VOC levels dependent on blood-air partitioning, 

Kblood/air, equilibrate quickly because of relatively small pulmonary venous blood volume 

and high flowrate (Anderson et al. 2003; Wagner et al. 1974). This relationship is confirmed 

by comparing smoker blood levels with smoke VOC signatures taken from machine-

generated levels that have been adjusted with the respective Kblood/air (i.e., multiplying 

smoke VOC levels by their Kblood/air). During exposure to the VOCs in cigarette smoke, the 

proportions of VOCs in the blood are based on their affinity that corresponds to Kblood/air. 

Because magnitude of VOC levels can vary depending on smoking technique, that is, the 

manner in which a smoker smokes a cigarette, two machine smoking protocols with 

different smoking intensities were evaluated— the ISO and Canadian Intense (CI) (Bialous 

and Yach 2001; Health Canada 1999). Shown in Fig. 1b is a comparison of the normalized 

adjusted BTEXS and 2,5-dimethylfuran signatures produced by the ISO and CI protocols 

from a U.S. market study of 50 brand varieties. Although the signatures associated with 

these two protocols are similar, there are some minor differences that are statistically 

Chambers et al. Page 8

Environ Sci Technol. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant. Specifically, m/p-xylene and styrene levels were lower relative to toluene for the 

ISO protocol than with the CI protocol. Because the blood BTEXS and 2,5-dimethylfuran 

signature of smokers more closely resembles that produced by the ISO protocol than the CI 

protocol (Fig. 1b), the ISO signature was used in ANN training comparison experiments 

discussed below. The similarity between VOC levels in smokers and adjusted VOC levels in 

smoke generated by the ISO method is a noteworthy finding, and underscores the 

consistency of relative BTEXS levels in cigarette smoke and among smokers.

Because of the consistency of relative blood levels of BTEXS/2,5-dimethylfuran among 

smokers given vastly different exposure magnitudes, we investigated whether a BTEXS/2,5-

dimethylfuran signature associated with crude oil or fuel could be identified in the general 

population using ANN pattern recognition. To train the ANN, best practice is to use relative 

levels of blood VOCs of petroleum exposed individuals. The limitation in using surrogate 

signatures produced from source concentrations to train the ANN is that they lack magnitude 

information, which is needed to properly add the contribution of any baseline levels that 

might exist. For example, although the ANN models constructed with signatures from either 

confirmed smokers or the surrogates produced similar outcomes for distinguishing between 

confirmed smokers and other/nonsmokers, not being able to add a baseline level to surrogate 

signatures did cause the model to classify individuals with low-level smoke VOC exposure 

as other/nonsmoker as the baseline level became a more prominent component of the 

signature. For reference, in the comparison shown in Fig. 1b, the mean baseline level of 

nonsmokers was subtracted from the smoker composite signature. In reality, the smoker 

composite includes baseline levels as shown in Fig. 4. With this baseline level absent from 

the surrogate signatures, the ANN (over 10 model iterations) agreed with the classification 

as defined by the 2,5-dimethylfuran cutpoint for 99.5–99.9 % of nonsmokers (N=1502), but 

only 85.7–90.7 % of smokers (N=356). On the contrary, use of blood VOC signatures from 

smokers resulted in classification of 99.0–99.8 % of nonsmokers (N-1502) and 97.5–100.0% 

of smokers (N=356) agreement with the 2,5-dimethylfuran cutpoint (over 10 model 

iterations).

For ANN analyses that used known smokers, smokers were identified using the smoke 

biomarker 2,5-dimethylfuran with a cutpoint of 0.014 ng/mL. It was convenient to use 2,5-

dimethylfuran levels to classify smokers because 2,5-dimethylfuran is measured 

simultaneously with the other VOCs and is a well-established smoking biomarker (Ashley et 

al. 1996; Gordon SM. 1990). Training and validation of the ANN involved using the 

NHANES 2007–08 data and excluding samples with missing data. The ANN model 

categorized participants who reported recent use of other combustible tobacco products [e.g., 

pipe (SMQ755 = 1, N = 1), cigar (SMQ 785 = 1, N = 6)] as cigarette smokers, with the 

exception of three cigar smokers. Two of these cigar smokers (SEQN# 46111 and 47799) 

had 2,5-dimethylfuran levels below the established 0.014 ng/mL cutpoint and were 

identified as nonsmokers in all 10 iterations of the model. VOC levels for these two samples 

are more consistent with those of the other/nonsmoker category having m/p-xylene below 

0.1 ng/mL. The third cigar smoker (SEQN# 51320) had a blood 2,5-dimethylfuran level of 

0.055 ng/mL, but was classified as an other/nonsmoker in 5 of the 10 ANN models, where 

the smoker probability average was 0.52 and other/nonsmoker average was 0.48. This 

average result, which assigns this third cigar smoker as a smoker, suggests that averaging 
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probabilities over multiple ANN model instances may better predict borderline signatures. 

Furthermore, recent marijuana use did not interfere with proper classification of tobacco 

smokers. Specifically, among the 3 tobacco smokers who reported recent marijuana use 

(DUQ220Q = 0/DUQ220U = 1), all signatures were assigned as smoker and all had blood 

2,5-dimethylfuran level above the smoker biomarker cutpoint.

The petroleum blood signature was defined using a surrogate approach because of a lack of 

VOC data for petroleum exposed individuals. To create crude oil and fuel signatures with 

which to train the ANN, crude oil and fuel levels from the Oil Properties 

Database(Environment Canada Environmental Technology Centre 2001) and a literature 

source for automobile gasoline(Potter et al. 1998) were multiplied by the corresponding 

Kblood/air and normalized relative to toluene as demonstrated with the cigarette smoke 

signatures. Despite the fact that fuel composition varies across crude oil sources, 

manufacturers, and the time of year (Potter et al. 1998; Wang et al. 2003), especially in 

terms of absolute levels, relative BTEX levels among low-end (e.g., gasoline) and middle 

distillates (diesel, jet, and home heating fuel) were similar to those seen in crude oil. This 

consistency is apparent in Fig. 2 for the adjusted and normalized BTEX signature where 

standard deviation error bars do not overlap. Relative total xylene levels were highest, 

toluene and ethylbenzene levels were moderate and benzene levels were the lowest. These 

adjusted crude oil and fuel signatures are consistent with previously published blood VOC 

data resulting from a fuel inhalation exposure subject shown in Fig. 2, which was used as a 

blinded positive control (Chambers et al. 2008).

Using the ANN model, 12 individuals out of 2906 had exposure patterns that placed them in 

the crude oil/fuel exposure category with a probability that ranged from 0.52 to 0.98 (Fig. 

3a). Of the 12 crude oil/fuel categorized individuals, all were nonsmokers based on the 2,5-

dimethylfuran cutpoint and questionnaire responses. There was no consistent trend with 

recent use of gas for cooking (VTQ241A, 4 out of 12), pumping gas or diesel (VTQ244A 

and VTQ281C, 7 out of 12), or time spent near smoke in the last 10 hours or less 

(VTQ265B, 1 out of 12), however all had reported having an attached garage (VTQ210, 12 

out of 12). Association between attached garage and increased blood BTEX levels has been 

previously reported (Mallach et al. 2017; Symanski et al. 2009). This association is 

attributed to outgassing of butyl rubber tires(Chambers et al. 2006) and evaporative fuel 

emissions from vehicles, which have been identified as an important sources of VOC 

emissions in the U.S. and other industrialized nations (Liu et al. 2015; United States 

Environmental Protection Agency 2015; Yamada 2013).

Of the 32 individuals that reported pumping gas in the last hour, one (SEQN# 80105) was 

classified as crude oil/fuel and had a high m/p-xylene level of 1.140 ng/mL. It is important 

to note that this identification was made based on relative levels of VOCs and not magnitude 

because data fed into the model was normalized relative to toluene. The nonsmoker 

classification had 19 individuals with m/p-xylene blood levels ranging from <0.024 to 0.159 

ng/mL and smoker classification included 7 individuals with m/p-xylene ranging from 0.077 

to 0.207 ng/mL. All smokers had 2,5-dimethylfuran above the 0.014 ng/mL cutpoint with 

the exception of SEQN# 78168. This sample (# 78168) was categorized as a smoker in all 10 

consecutive runs of the ANN model with categorization probability for those runs ranging 
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from 0.82 to 1.00. However, this individual had self-reported smoking marijuana that day 

(DUQ220Q = 0/DUQ220U = 1). Because ANN assignments are restricted to only the 

categories available in the model, exposure from a different source will be assigned to the 

category that most closely represents the signature. In the case of the self-reported marijuana 

smoker, the overall signature was assigned to the category trained on tobacco smokers. The 

remaining 5 individuals were not included because of missing blood level data. These data 

suggest that most individuals, 31 out of 32, who pumped gas within an hour before the MEC 

exam did not experience a level of BTEXS exposure to significantly alter their blood 

signature and absolute levels were commensurate with their ANN assigned category.

Although styrene levels were not available for ANN modeling, signatures for NHANES 

2007–08 data are shown in Fig. 4 so as to demonstrate relative styrene blood levels, which 

are an important concomitent in crude oil/fuel and smoke blood signatures. Geometric 

means are plotted because VOC distributions are log normal. The presentation of the smoker 

category signature differs slightly from that shown in Figs. 1a and 1b, which were presented 

as arithmetic means and adjusted by subtracting the mean baseline level taken from 

nonsmokers. VOC variability was smallest among smokers where relative standard deviation 

ranged from 61 to 85% for the BTEXS and 2,5-dimethylfuran. RSDs for monoaromatic 

compounds among those categorized as other/nonsmoker ranged from 57% to 528%, where 

styrene (RSD = 57%) had the lowest RSD and toluene (RSD = 528%) the highest. These 

relatively large RSDs are attributed to a limited number of samples with high exposure to 

BTEXS that are not categorized as crude oil/fuel. These samples did not appear to have the 

characterized crude oil/fuel exposure pattern, but may be the result of misclassification or 

exposure to a VOC source not associated with crude oil/fuel or smoke. For example, one 

sample (SEQN# 51422) classified as nonsmoker had only high toluene (24.1 ng/mL or ppb) 

with all other monoaromatic compounds below 0.210 ng/mL. The blood 2,5-dimethylfuran 

level for this sample was 0.015 ng/mL, which is above the previously demonstrated smoking 

biomarker cutpoint of 0.014 ng/mL, but the blood toluene level is more than an order of 

magnitude higher than any smoker. The ANN classification of this sample as other/

nonsmoker demonstrates the strength of using a multianalyte signature in making a 

categorization determination rather than considering just one biomarker level. Removing this 

one sample decreased the RSD for toluene from 528% to 235%. The variability for the crude 

oil/fuel group ranged from 42% to 233% and was lowest for benzene (RSD = 42%) and 

highest for styrene (RSD = 233%). These results show that individuals categorized as crude 

oil/fuel can have differing exposure levels.

5. Conclusions

Based on this work and previous work in our laboratory, petroleum and petroleum-based 

products can produce a BTEX signature distinguishable from other sources such as tobacco 

smoke even though these sources are composed of many of the same compounds. When 

combined with other concomitant VOCs such as styrene and 2,5-dimethylfuran, BTEX 

signatures associated with crude oil/fuel can be reliably distinguished from signatures 

related to tobacco smoke or those not consistent with to either of these sources. The use of 

multiple biomarkers minimizes the effect of confounding from other sources that can 

otherwise occur with relying on a single biomarker cutpoint level. Unique to this work is the 
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use of surrogate signatures derived by adjusting the source VOC composition with 

respective blood/air partition constants and normalization of the VOC levels to a reference 

VOC with high detection frequency. Although best practice would be to use actual exposed 

individuals, use of a surrogate for petroleum exposure was necessary because sufficient 

exposure data were not available. A limitation of using surrogate signatures is that there is 

no magnitude information, only relative level. Without magnitude, surrogate signatures 

cannot be adjusted to take into account baseline levels. Absence of this information can 

cause low-level exposure to be classified as other/nonsmoker as that signature more closely 

reflects the baseline signature associated with no exposure.

The use of ANN for pattern recognition provided the means to reliably identify individuals 

with signatures consistent with those used to train the ANN, which is particularly useful 

when working with large study populations such as NHANES. Furthermore, in performing 

categorization with ANN, occurrence between different populations could be assessed 

objectively because fixed model calculations are universally applied. Using the ANN, 7 

individuals out of 1998 (0.35%) from NHANES 2007–08 and 12 individuals out of 2906 

(0.41%) had blood signatures consistent with the crude oil/fuel surrogate signature. Visual 

inspection of these crude oil/fuel signatures confirms the identification made by the ANN 

model. Based on these analyses, blood VOC levels in the United States indicated that 

substantial exposures to crude oil and fuel are infrequent.
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Figure 1. 
Blood BTEXS signature among smokers remains consistent despite demographic and 

smoking technique differences, although absolute levels vary substantially. (a) Comparison 

of baseline level adjusted mean blood concentrations of BTEXS and 2,5-dimethylfuran 

among cigarette smokers who report smoking 5 (N=47), 10 (N=71), 15 (N=42), 20 (N=91), 

30 (N=25), and 40 (N=14) cigarettes per day from the 2007–08 NHANES. (b) Comparison 

of normalized (relative to toluene) and adjusted machine generated cigarette smoke 

signatures using Canadian Intense and ISO protocols from 50 U.S. brand varieties with a 
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composite of blood levels among all NHANES 2007–08 cigarette smokers. Cigarette smoke 

signatures comprise BTEXS and 2,5-dimethylfuran levels adjusted by the corresponding 

blood/air partition constant (Kblood/air). Error bars are 1 standard deviation from the mean.
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Figure 2. 
Comparison of composite petroleum signature (25 crude oils and 10 fuels) and surrogate 

blood level, with the blood signature from a known fuel exposure demonstrating similarity 

between surrogate and known exposure. Error bars are 1 standard deviation from the mean.
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Figure 3. 
Comparison of probability density from artificial neural network showing how well 

categorization is defined between the different categories for (a) crude oil/fuel exposure vs. 

other/nonsmoker and smoker and for (b) tobacco other/nonsmoker vs. smoker for the 

NHANES 2013–14 study data.
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Figure 4. 
Comparison of BTEXS/2,5-dimethylfuran blood signature composites categorized by 

artificial neural network for crude oil/fuel, nonsmoker, and smoker groups from NHANES 

2007–08.
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